Fast learning of fast transforms, with guarantees IEEE ICASSP 2022, Singapore

Quoc-Tung Le, Léon Zheng, Elisa Riccietti, Rémi Gribonval

May, 2022

Given a matrix **Z** and $J \ge 2$, find sparse factors $\mathbf{X}^{(J)}, \dots, \mathbf{X}^{(1)}$ such that

$$\mathbf{Z} \approx \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} \dots \mathbf{X}^{(1)}$$

Given a matrix **Z** and $J \ge 2$, find sparse factors $\mathbf{X}^{(J)}, \ldots, \mathbf{X}^{(1)}$ such that

$$\mathbf{Z} \approx \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} \dots \mathbf{X}^{(1)}$$

Application (Large-scale inverse problem)

Reduce time/memory complexity: find \mathbf{x} such that $\mathbf{y} = \mathbf{Z}\mathbf{x}$.

Given a matrix **Z** and $J \ge 2$, find sparse factors $\mathbf{X}^{(J)}, \ldots, \mathbf{X}^{(1)}$ such that

$$\mathbf{Z} \approx \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} \dots \mathbf{X}^{(1)}$$

Application (Large-scale inverse problem)

Reduce time/memory complexity: find **x** such that $\mathbf{y} = (\mathbf{X}^{(J)} \dots \mathbf{X}^{(1)})\mathbf{x}$.

Problem formulation

$$\min_{\mathbf{X}^{(1)},...,\mathbf{X}^{(J)}} \left\| \mathbf{Z} - \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} ... \mathbf{X}^{(1)} \right\|_{F}^{2}, \text{ such that } \{\mathbf{X}^{(\ell)}\}_{\ell} \text{ are sparse.}$$

Choices for sparsity constraint:

- **O Classical sparsity patterns**: *k*-sparsity by column and/or by row
- **2** Fixed-support constraint: supp $(\mathbf{X}^{(\ell)}) \subseteq \mathbf{S}^{(\ell)}$ for $\ell = 1, \ldots, J$.

Problem formulation

$$\min_{\mathbf{X}^{(1)},...,\mathbf{X}^{(J)}} \left\| \mathbf{Z} - \mathbf{X}^{(J)} \mathbf{X}^{(J-1)} ... \mathbf{X}^{(1)} \right\|_{F}^{2}, \text{ such that } \{\mathbf{X}^{(\ell)}\}_{\ell} \text{ are sparse.}$$

Choices for sparsity constraint:

- **O Classical sparsity patterns**: *k*-sparsity by column and/or by row
- **2** Fixed-support constraint: supp $(\mathbf{X}^{(\ell)}) \subseteq \mathbf{S}^{(\ell)}$ for $\ell = 1, \ldots, J$.

A difficult problem

- Sparse coding is NP-hard [Foucart et al. 2013].
- Fixed-support setting is NP-hard for J = 2 factors [Le et al. 2021].
- Gradient-based methods [Le Magoarou et al. 2016] lack guarantees.

Focus on fixed-support constraint

When is the problem well-posed and tractable? (case with J = 2)

Oconditions for uniqueness of the solution [Zheng et al. 2022]

Onditions for achieving global optimality [Le et al. 2021]

Focus on fixed-support constraint

When is the problem well-posed and tractable? (case with J = 2)

- Conditions for uniqueness of the solution [Zheng et al. 2022]
- Onditions for achieving global optimality [Le et al. 2021]

 \rightarrow We study a fixed-support constraint ($J \ge 2$) satisfying such conditions.

Figure: Butterfly structure: supp $(\mathbf{X}^{(\ell)}) \subseteq \mathbf{S}_{bf}^{(\ell)} := \mathbf{I}_{\mathbf{N}/2^{\ell}} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \otimes \mathbf{I}_{2^{\ell-1}}.$

The butterfly structure is common to many fast transforms (e.g. DFT).

Focus on fixed-support constraint

When is the problem well-posed and tractable? (case with J = 2)

- Conditions for uniqueness of the solution [Zheng et al. 2022]
- Conditions for achieving global optimality [Le et al. 2021]

 \rightarrow We study a fixed-support constraint ($J \ge 2$) satisfying such conditions.

Figure: Butterfly structure: supp $(\mathbf{X}^{(\ell)}) \subseteq \mathbf{S}_{bf}^{(\ell)} := \mathbf{I}_{\mathbf{N}/2^{\ell}} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \otimes \mathbf{I}_{2^{\ell-1}}.$

The butterfly structure is common to many fast transforms (e.g. DFT).

Main contribution

An efficient **hierarchical algorithm** to approximate **any** matrix by a product of **butterfly** factors.

Le, Zheng, Riccietti, Gribonval

Fast learning of fast transforms

Hierarchical factorization algorithm Let $\mathbf{Z} := \mathbf{X}^{(4)} \mathbf{X}^{(3)} \mathbf{X}^{(2)} \mathbf{X}^{(1)}$ such that:

How to recover the partial products?

How to recover the partial products? \rightarrow use their known supports

How to recover the partial products? ightarrow use their known supports

Two-layer fixed-support problem:

$$\min_{\mathbf{A},\mathbf{B}} \|\mathbf{Z} - \mathbf{A}\mathbf{B}\|_F^2, \text{ s.t. supp}(\mathbf{A}) \subseteq \mathbf{S}_{bf}^{(4)}, \text{ supp}(\mathbf{B}) \subseteq \mathbf{S}_{bf}^{(3)} \mathbf{S}_{bf}^{(2)} \mathbf{S}_{bf}^{(1)}$$
(1)

Fact: $\mathbf{AB} = \sum_{i=1}^{N} \mathbf{A}_{\bullet,i} \mathbf{B}_{i,\bullet}$.

Fact:
$$\mathbf{AB} = \sum_{i=1}^{N} \mathbf{A}_{\bullet,i} \mathbf{B}_{i,\bullet}$$

Constraint on the pair of factors

Fact:
$$\mathbf{AB} = \sum_{i=1}^{N} \mathbf{A}_{\bullet,i} \mathbf{B}_{i,\bullet}$$

Constraint on the rank-one matrices

$$supp(\mathbf{A}_{\bullet,1}\mathbf{B}_{1,\bullet}) \subseteq \mathbf{I} = \mathcal{S}_{1}$$
$$supp(\mathbf{A}_{\bullet,2}\mathbf{B}_{2,\bullet}) \subseteq \mathbf{I} = \mathcal{S}_{2}$$
$$\vdots$$
$$supp(\mathbf{A}_{\bullet,N}\mathbf{B}_{N,\bullet}) \subseteq \mathbf{I} = \mathcal{S}_{N}$$

Constraint on the rank-one matrices

$$\operatorname{supp}(\mathbf{A}_{\bullet,1}\mathbf{B}_{1,\bullet}) \subseteq \mathbf{I}_{\bullet} = \mathcal{S}_{1} \qquad \cdots$$
$$\operatorname{supp}(\mathbf{A}_{\bullet,2}\mathbf{B}_{2,\bullet}) \subseteq \mathbf{I}_{\bullet} = \mathcal{S}_{2} \qquad \operatorname{supp}(\mathbf{A}_{\bullet,N}\mathbf{B}_{N,\bullet}) \subseteq \mathbf{I}_{\bullet} = \mathcal{S}_{N}$$

Theorem ([Le et al. 2021; Zheng et al. 2022])

The rank-one matrices have **pairwise disjoint supports**. Consequently, (1) is polynomially solvable and admits an essentially unique solution.

Constraint on the rank-one matrices

$$\sup(\mathbf{A}_{\bullet,1}\mathbf{B}_{1,\bullet}) \subseteq \mathbf{I}_{\bullet} = \mathcal{S}_{1} \qquad \cdots$$
$$\sup(\mathbf{A}_{\bullet,2}\mathbf{B}_{2,\bullet}) \subseteq \mathbf{I}_{\bullet} = \mathcal{S}_{2} \qquad \sup(\mathbf{A}_{\bullet,N}\mathbf{B}_{N,\bullet}) \subseteq \mathbf{I}_{\bullet} = \mathcal{S}_{N}$$

Theorem ([Le et al. 2021; Zheng et al. 2022])

The rank-one matrices have **pairwise disjoint supports**. Consequently, (1) is polynomially solvable and admits an essentially unique solution.

Algorithm to solve (1):

- Extract the submatrices $\mathbf{Z}_{|S_i}$, $i = 1, \dots, N$
- Perform best rank-one approximation for each submatrix

Le, Zheng, Riccietti, Gribonval

Theoretical guarantees

The algorithm works for any number of factors and any binary tree.

Theoretical guarantees

The algorithm works for any number of factors and any binary tree.

Theorem (Exact recovery guarantees [Zheng et al. 2022])

Except for trivial degeneracies, every tuple $(\mathbf{X}^{(\ell)})_{\ell=1}^{J}$ satisfying the butterfly constraint can be reconstructed by the algorithm from $\mathbf{Z} := \mathbf{X}^{(J)} \dots \mathbf{X}^{(1)}$ (up to unavoidable scaling ambiguities).

Theoretical guarantees

The algorithm works for any number of factors and any binary tree.

Theorem (Exact recovery guarantees [Zheng et al. 2022])

Except for trivial degeneracies, every tuple $(\mathbf{X}^{(\ell)})_{\ell=1}^{J}$ satisfying the butterfly constraint can be reconstructed by the algorithm from $\mathbf{Z} := \mathbf{X}^{(J)} \dots \mathbf{X}^{(1)}$ (up to unavoidable scaling ambiguities).

- Complexity is $\mathcal{O}(N^2)$ for both trees.
- We can use the algorithm in the non-exact setting.

Faster and more accurate in the noiseless setting

Approximation of the DFT matrix by a product of J = 9 butterfly factors:

Also more robust in the noisy setting

Approximation of $Z = DFT_N + \sigma W$ by a product of J = 9 butterfly factors:

Our method scales with the matrix size

Approximation of the (noisy) DFT matrix of size $N = 2^J$ by a product of J butterfly factors:

Conclusion and perspectives

Conclusion and perspectives

Implementation in the FAµST toolbox at https://faust.inria.fr.

Conclusion and perspectives

Implementation in the FA μ ST toolbox at https://faust.inria.fr.

Future work

- Application in dictionary learning, sparse neural network training, ...
- Stability properties of the hierarchical algorithm

Thank you for your attention!

To know more:

Q.-T. Le, E. Riccietti, and R. Gribonval (2022)

Spurious Valleys, Spurious Minima and NP-hardness of Sparse Matrix Factorization With Fixed Support *arXiv preprint*, arXiv:2112.00386.

L. Zheng, E. Riccietti, and R. Gribonval (2022) Efficient Identification of Butterfly Sparse Matrix Factorizations *arXiv preprint*, arXiv:2110.01235.