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Approximating a matrix by a product of sparse factors

Given a matrix Z and J ≥ 2, find sparse factors X(J), . . . ,X(1) such that

Z ≈ X(J)X(J−1) . . .X(1).

Application (Large-scale inverse problem)

A difficult problem

Sparse coding is NP-hard [Foucart et al. 2013].

Fixed-support setting is NP-hard for J = 2 factors [Le et al. 2021].

Gradient-based methods [Le Magoarou et al. 2016] lack guarantees.
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Approximating a matrix by a product of sparse factors

Problem formulation

min
X(1),...,X(J)

∥∥∥Z− X(J)X(J−1)...X(1)
∥∥∥2
F
, such that {X(`)}` are sparse.

Choices for sparsity constraint:

1 Classical sparsity patterns: k-sparsity by column and/or by row

2 Fixed-support constraint: supp(X(`)) ⊆ S(`) for ` = 1, . . . , J.

A difficult problem

Sparse coding is NP-hard [Foucart et al. 2013].
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Focus on fixed-support constraint

When is the problem well-posed and tractable? (case with J = 2)

1 Conditions for uniqueness of the solution [Zheng et al. 2022]

2 Conditions for achieving global optimality [Le et al. 2021]

→ We study a fixed-support constraint (J ≥ 2) satisfying such conditions.

Figure: Butterfly structure: supp(X(`)) ⊆ S(`)
bf := IN/2` ⊗ [ 1 1

1 1 ] ⊗ I2`−1 .

The butterfly structure is common to many fast transforms (e.g. DFT).

Main contribution

An efficient hierarchical algorithm to approximate any matrix by a
product of butterfly factors.
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Hierarchical factorization algorithm
Let Z := X(4)X(3)X(2)X(1) such that:

How to recover the partial products? → use their known supports

Lemma (Supports of the partial products)

Two-layer fixed-support problem:

min
A,B
‖Z− AB‖2F , s.t. supp(A) ⊆ S

(4)
bf , supp(B) ⊆ S

(3)
bf S

(2)
bf S

(1)
bf (1)
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Two-layer fixed-support sparse matrix factorization

min
A,B
‖Z− AB‖2F , s.t. supp(A) ⊆ S

(4)
bf , supp(B) ⊆ S

(3)
bf S

(2)
bf S

(1)
bf (1)
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Two-layer fixed-support sparse matrix factorization

min
A,B
‖Z− AB‖2F , s.t. supp(A) ⊆ S

(4)
bf , supp(B) ⊆ S

(3)
bf S

(2)
bf S

(1)
bf (1)

Fact: AB =
∑N

i=1A•,iBi ,•.

Constraint on the pair of factors

Constraint on the rank-one matrices
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Two-layer fixed-support sparse matrix factorization

min
A,B
‖Z− AB‖2F , s.t. supp(A) ⊆ S

(4)
bf , supp(B) ⊆ S

(3)
bf S

(2)
bf S

(1)
bf (1)

Constraint on the rank-one matrices

Theorem ([Le et al. 2021; Zheng et al. 2022])

The rank-one matrices have pairwise disjoint supports. Consequently,
(1) is polynomially solvable and admits an essentially unique solution.

Algorithm to solve (1):

1 Extract the submatrices Z|Si , i = 1, . . . ,N

2 Perform best rank-one approximation for each submatrix
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Hierarchical factorization algorithm
Let Z := X(4)X(3)X(2)X(1) such that:

The two-layer procedure is repeated recursively.

Lemma (Support of the partial products)

The corresponding rank-one supports are pairwise disjoint.

The butterfly factors {X(`)}4`=1 are recovered (up to scaling ambiguities)
from the product Z.
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Theoretical guarantees
The algorithm works for any number of factors and any binary tree.

Theorem (Exact recovery guarantees [Zheng et al. 2022])

Except for trivial degeneracies, every tuple (X(`))J`=1 satisfying the
butterfly constraint can be reconstructed by the algorithm from
Z := X(J) . . .X(1) (up to unavoidable scaling ambiguities).

Complexity is O(N2) for both trees.

We can use the algorithm in the non-exact setting.
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Faster and more accurate in the noiseless setting

Approximation of the DFT matrix by a product of J = 9 butterfly factors:

Ours

Gradient-based
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Also more robust in the noisy setting

Approximation of Z = DFTN + σW by a product of J = 9 butterfly
factors:

Ours

Gradient-based
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Our method scales with the matrix size

Approximation of the (noisy) DFT matrix of size N = 2J by a product of J
butterfly factors:

Le, Zheng, Riccietti, Gribonval Fast learning of fast transforms May 2022 9 / 10



Conclusion and perspectives

Storage:

(dense)

Storage:

Cost for evaluation: Cost for evaluation:

Hierarchical algorithm:

Implementation in the FAµST toolbox at https://faust.inria.fr.

Future work

Application in dictionary learning, sparse neural network training, ...

Stability properties of the hierarchical algorithm
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Thank you for your attention!

To know more:

Q.-T. Le, E. Riccietti, and R. Gribonval (2022)
Spurious Valleys, Spurious Minima and NP-hardness of Sparse Matrix
Factorization With Fixed Support
arXiv preprint, arXiv:2112.00386.

L. Zheng, E. Riccietti, and R. Gribonval (2022)
Efficient Identification of Butterfly Sparse Matrix Factorizations
arXiv preprint, arXiv:2110.01235.
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